Wetsuit
A wetsuit is a garment, usually made of foamed neoprene, providing thermal insulation, abrasion resistance and buoyancy. The insulation properties depend on bubbles of gas enclosed within the material, which reduce its ability to conduct heat. The bubbles also give the wetsuit a low density, providing buoyancy in water.
Hugh Bradner, a University of California, Berkeley physicist invented the modern wetsuit in 1952. Wetsuits became available in the mid-1950s and evolved as the relatively fragile foamed neoprene was first backed, and later sandwiched, with thin sheets of tougher material such as nylon or later Lycra/Spandex. Improvements in the way joints in the wetsuit were made by gluing, taping and blindstitching, helped the suit to remain waterproof and reduce flushing, the replacement of water trapped between suit and body by cold water from the outside.[1] Further improvements in the seals at the neck, wrists and ankles produced a suit known as a "semi-dry".
Different types of wetsuit are made for different uses and for different temperatures. Suits range from a thin (2 mm or less) "shortie", covering just the torso, to a full 8 mm semi-dry, usually complemented by neoprene boots, gloves and hood.
Wetsuit creator history
In 1952, UC Berkeley and subsequent UC San Diego SIO physicist Hugh Bradner, who is considered to be the original inventor[2] and "father of the modern wetsuit,"[2] had the insight that a thin layer of trapped water could be tolerated between the suit fabric and the skin, so long as insulation was present in the fabric in the form of trapped bubbles. In this case, the water would quickly reach skin temperature and the air in the fabric would continue to act as the thermal insulation to keep it that way. In the popular mind, the layer of water between skin and suit has been credited with providing the insulation. But as his letter notes, Dr. Bradner clearly understood the suit did not need to be wet because it isn't the water that provides the insulation but rather the gas in the suit fabric.[2][3] He initially sent his ideas to Lauriston C. "Larry" Marshall. Marshall was involved in a U.S. Navy/National Research Council Panel on Underwater Swimmers.[4] However, it was Willard Bascom, an engineer at the Scripps Institution of Oceanography in La Jolla, California, who suggested neoprene as a feasible material to Bradner.[3]
However, Bradner and Bascom were not overly interested in profiting from their design and were unable to successfully market a version to the public.[3] They attempted to patent their neoprene wetsuit design, but their application was rejected because the design was viewed as too similar to a flight suit.[3] The United States Navy also turned down Bradner's and Bascom's offer to supply its swimmers and frogmen with the new wetsuits due to concerns that the gas in the neoprene component of the suits might make it easier for naval divers to be detected by underwater sonar.[3] The first written documentation of Bradner's invention was in a letter to Marshall, dated June 21, 1951.[4]
Jack O'Neill started using closed-cell neoprene foam which was shown to him by his bodysurfing friend, Harry Hind, who knew of it as an insulating material in his laboratory work. After experimenting with the material and finding it superior to other insulating foams, O'Neill founded the successful wetsuit manufacturing company called O'Neill in a garage in 1952, later relocating to Santa Cruz, California[5] in 1959 with the motto "It's Always Summer on the Inside".[6][7] Bob and Bill Meistrell, from Manhattan Beach, California, also started experimenting with neoprene around 1953. They started a company which would later be named Body Glove.
Neoprene was not the only material used in early wetsuits, particularly in Europe. The French-made Pêche-Sport Suit and the UK-made Siebe Gorman Swimsuit were both made out of sponge rubber. The Heinke Dolphin Suit of the same period, also made in England, came in a green male and a white female version, both manufactured from natural rubber lined with stockinet.
Wetsuit design history
Originally, wetsuits were made only with raw sheets of foam-rubber neoprene that did not have any backing material. This type of suit required extra caution while pulling it on because the raw foam-rubber by itself is both fragile and sticky against bare skin. Stretching and pulling excessively easily caused these suits to be torn in half. This was somewhat remedied by thoroughly powdering the suit and the diver's body with talc to help the rubber slide on more easily.
Backing materials first arrived in the form of nylon sheeting applied to one side of the neoprene. This allowed a swimmer to pull on the suit relatively easily since the tough nylon took most of the strain of pulling on the suit, but the suit still had the black sheet rubber exposed on the outside and the nylon was very stiff and rigid, limiting flexibility. A small strip reversed with the rubber against the skin could help provide a sealing surface to keep water out around the neck, wrists, and ankles.
In the early 1960s, the British Dunlop Sports Company brought out its yellow Aquafort neoprene wetsuit, whose high visibility was designed to improve diver safety. However, the line was discontinued after a short while and wetsuits reverted to their black uniformity. The colorful wetsuits seen today first arrived in the 1970s when double-backed neoprene was developed. Now the foam-rubber was sandwiched between two protective fabric outer layers, greatly increasing the tear-resistance of the material. An external layer also meant that decorative colors, logos, and patterns could be made with panels and strips sewn into various shapes. This growth from bare flat black rubber to full color took off in the 1980s with brilliant fluorescent colors common on many suits.
Wetsuit assembly history
Stitching
The first suits used traditional sewing methods to simply overlap two strips of rubber and sew them together. In a rubber wetsuit this does not work well for a number of reasons, the main one being that punching holes straight through both layers of foam for the thread opens up passages for water to flow in and out of the suit. The second problem is that the stretching of the foam tended to enlarge the needle holes when the suit was worn. This meant that a wetsuit could be very cold all along the seams of the suit. And although the sewn edge did hold the two pieces together, it could also act as a perforated tear edge, making the suit easier to tear along the seams when putting it on and taking it off.
When nylon-backed neoprene appeared, the problem of the needle weakening the foam was solved, but still the needle holes leaked water along the seams.
Seam taping
To deal with all these early sewing problems, taping of seams was developed. The tape is a strong nylon cloth with a very thin but solid waterproof rubber backing. The tape is applied across the seam and bonded either with a chemical solvent or with a hot rolling heat-sealer to melt the tape into the neoprene.
With this technology, the suit could be sewn and then taped, and the tape would cover the sewing holes as well as providing some extra strength to prevent tearing along the needle holes.
When colorful double-backed designer suits started appearing, taping moved primarily to the inside of the suit because the tape was usually very wide, jagged, black, and ugly, and was hidden within the suit and out of sight.
Many 1960's and 1970's wetsuits were black with visible yellow seam taping. The yellow made the divers more easily seen in dark low-visibility water. To avoid this problem O'Neill fabricators developed a seam-tape which combined a thin nylon layer with a polyester hemming tape. Applied over the interior of the glued & sewn seam, then anneal bonded with a hand held teflon heating iron produced a seam that was both securely sealed and much stronger.
Seam gluing
Another alternative to sewing was to glue the edges of the suit together. This created a smooth, flat surface that did not necessarily need taping, but unfortunately raw foam glued to foam is not a strong bond and still prone to tearing.
Most early wetsuits were fabricated completely by hand, which could lead to sizing errors in the cutting of the foam sheeting. If the cut edges did not align correctly or the gluing was not done well, there might still be water leakage along the seam.
Initially suits could be found as being sewn only, glued only, taped only, then also sewn and taped, or glued and taped, or perhaps all three.
Blindstitch revolution
Sometime after nylon-backed neoprene appeared, the blind stitch method was developed. A blindstitch sewing machine uses a very unusual curved needle, which is designed to not go all the way through the neoprene but just shallowly dip in behind the fabric backing.[1]
The curved needle allows the fabric backing to be sewn together without punching a hole completely through the neoprene, and thereby eliminating the water-leakage holes along the seam. Blindstitch seams also lay flat, butting up the edge of one sheet against another, allowing the material to lay flatter and closer to the skin. For these reasons blindstitching rapidly became the primary method of sewing wetsuits together, with other methods now used mainly for decorative or stylistic purposes.
Fabric
Further advances in suit design
Highly elastic fabrics such as Lycra/Spandex have mostly replaced raw nylon backing, since the nylon by itself cannot be stretched and makes the neoprene very stiff. Incorporating Lycra into the backing permits a large amount of stretching that does not damage the suit, and allowed suits to become closer fitting.
After the development of double-backed neoprene, singled-backed neoprene still had its uses for various specific purposes. For example a thin strip of single-backed wrapped around the leg, neck, and wrist openings of the suit creates a sticky rubber seal that greatly reduces the flushing of water in and out of the suit as the person's body moves. But since the strip is very narrow, it does not drag on the skin of the wearer and thus makes the suit easy to put on and remove.
As wetsuit manufacturers continued to design suits, they found ways that the materials could be further optimized and customized. The O'Neill Animal Skin created in 1974 by then Director of Marketing, E.J. Armstrong, was one of the first designs combining a turtle-neck based on the popular Sealsuit with a flexible lightweight YKK horizontal zipper across the back shoulders similar in concept to the inflatable watertight Supersuit (developed by Jack O'Neill in the late 1960s). The Animal Skin eventually evolved molded rubber patterns bonded onto the exterior of the neoprene sheeting (a technique E.J. Armstrong perfected for application of the moulded raised rubber Supersuit logo to replace the standard flat decals). This has been carried on as stylized reinforcing pads of rubber on the knees and elbows to protect the suit from wear, and allows logos to be directly bonded onto raw sheet rubber. Additionally, the Animal Skin's looser fit allowed for the use of a supplemental vest in extreme conditions.
In the early 70's Gul Wetsuits pioneered the one-piece wetsuit named as the steamer. Its name was given because of the steam given off from the suit once taken off allowing heat and water held inside to escape. Today one-piece wetsuits are still sometimes referred to as 'Steamers'.[8]
In recent years, manufacturers have experimented by combining various materials with neoprene to lend additional warmth or flexibility to their suits. These include, but are not limited to, Spandex, and wool.
Precision computer-controlled cutting and assembly methods, such as water-jet cutting, have allowed ever greater levels of seam precision, permitting designers to use many small individual strips of different colors while still keeping the suit free of bulging and ripples from improper cutting and sewing. Further innovations in CAD (Computer Aided Design) technology allow precision cutting for custom-fit wetsuits.
Return of single-backed neoprene
As wetsuits continued to evolve, their use was explored in other sports such as open-water swimming and triathlons. Although double-backed neoprene is strong, the cloth backing is rough and creates a large amount of drag in the water, slowing down the swimmer. A single-backed suit meanwhile has a very smooth, slick exterior permitting water to slide easily over the bare neoprene.[1] With the advances of elastic Lycra backings and blindstitching, single-backed neoprene suits could now be made that outperformed the early cousins from the 1970s. Other developments in single-backed wetsuits include the suits designed for free-diving and spearfishing. Single lined neoprene is more flexible than double lined. To achieve flexibility and low bulk for a given warmth of suit, they are unlined inside, and the smooth surface of the neoprene is removed mechanically to reveal a rougher "open cell" surface which adheres closely to the skin and reduces flushing of the suit. The lined outer surface may be printed with camouflage patterns for spearfishing.
Some triathlon wetsuits go further, and use rubber-molding and texturing methods to roughen up the surface of the suit on the forearms, to increase forward drag and help pull the swimmer forwards through the water. Extremely thin 1mm neoprene is also often used in the under-arm area, to decrease stretch resistance and reduce strain on the swimmer when they extend their arms out over their head.
Wetsuits used for caving are often single-backed with a textured surface known as "sharkskin" which is a thin layer where the neoprene is less expanded. This makes it more abrasion resistant for squeezing between rocks and doesn't get torn in the way that fabric does.
Another reason to eliminate the external textile backing is to reduce water retention which can increase evaporative cooling and wind chill in suits used mainly out of the water.
References
- ↑ 1.0 1.1 1.2 "How Wetsuits Work". Lomo Watersport. Retrieved February 20, 2010.
- ↑ 2.0 2.1 2.2 Taylor, Michael (May 11, 2008). "Hugh Bradner, UC's inventor of wetsuit, dies". San Francisco Chronicle. Retrieved May 23, 2008.
- ↑ 3.0 3.1 3.2 3.3 3.4 Taylor, Michael (May 21, 2008). "Hugh Bradner, Physicist who worked on the Manhattan Project and invented the neoprene wetsuit". The Times (London). Retrieved May 23, 2008.
- ↑ 4.0 4.1 Rainey, C. "Wet Suit Pursuit: Hugh Bradner's Development of the First Wet Suit". UC San Diego, Scripps Institution of Oceanography Archives, Scripps Institution of Oceanography. Retrieved December 24, 2009.
- ↑ "Steamer Lane and Some Surf History". Santa Cruz Waves. Retrieved June 27, 2014.
- ↑ Kampion, Drew; Marcus, Ben (December 2000). "Jack O'Neill – Surfing A to Z". Surfline/Wavetrak, Inc. Retrieved December 7, 2008.
- ↑ "Oneill – Know Jack". O'Neill Inc. Archived from the original on February 19, 2008. Retrieved December 7, 2008.
- ↑ "Gul History". History. 17 May 2014. Retrieved 17 May 2014.